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LETTER TO THE EDITOR 

Towards a cluster description of the three-dimensional spin 
glass transition 

D Stauffer 
Physics DeparlmenL Saint Francis Xavier University. Antigonish, NS BZG ICO, Canada 

Received 21 April 1993 

Abstract Numerically the three-dimensional bansition in the Edwards-Anderron &J spin glass 
agrees with the bond percolation threshold of the hevex’ broken bonds. 

In Edwards-Anderson spin glasses [l], each bond between nearest neighbours has randomly 
the energy +J or - J ,  with equal probability, and the bonds connect spins Si = ?cl. In 
three dimensions, but not in two, a phase transition [2] is observed when the thermal energy 
kT roughly equals the bond energy J .  We call a bond between sites i and j ‘broken’ if in a 
given configuration J ~ ~ S ~ S ;  is negative (= -i); if this quantity is poBitive (= I)  we call the 
bond unbroken. It would be nice if the phase transition were connected to the percolation 
of unbroken bonds [3], as is the case for randomly dilute ferromagnets. 

Such attempts at percolation descriptions for spin glasses are quite old [41, but a clear 
definition of how to define the percolating cluster is not easy. Even for pure ferromagnets 
this definition took a long time to develop; see chapter1 of [3] for static and Alexandrowicz 
[fl  for dynamic aspects. We get no agreement between the bond percolation threshold 
and the spin glass transition if we consider 161 unbroken bonds only with a probability 
1 - exp(-21JI). This letter takes a step towards a suitable definition, leaving applications 
(like cluster flip algorithms [7]) to the future. 

Liang [81 introduced the concept of observing empirically how often bonds are broken. 
In this spirit we observe the probability w that during an observation time t (measured in 
units of Monte Carlo steps per spin) a bond is found unbroken: 

ZW - 1 = (J i jS iS j )  

for every neighbour pair. We then check for the bond percolation clusters formed by those 
bonds which had w greater than some probability W ,  and by varying this probability W we 
find its threshold value W = p at which for the first time abond percolation cluster spans 
the whole lattice. Then those bonds which are. observed to be unbroken at least p t  times 
during t sweeps through the lattice form an incipient infinite percolation cluster. (We check 
the bonds after every sweep.) 

Figure 1 shows our results for this percolation threshold p (in the form of 2 p  - 1 which 
comes directly from summing up JijSiSj over all time steps). The three-dimensional data 
approach the limit p = I at or slighly below kT/J  = 1.2, close to the current estimates 
[91 of 1.1 8 to 1.34. Thus at the spin glass phase transition, the ‘never’ broken bondr~start 
to form an infinite cluster. 
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Figure 1. Percolalion p k  diagram in two dimensions. In fhe lower lefl part, an infinite 
network of seldomly broken bonds is formed. We observed ten consecutive intervals of lengih 
t = 1000, ignoring ule first ones. 

Unfortunately, this simple criterion cannot be exact since 'never' is a dangerous concept. 
If the observation time t is long enough, a bond will always be broken at some time. For 
example, a spin surrounded by six ferromagnetic bonds and six parallel neighbours will flip 
to an antiparallel orientation with probability exp(-12J/kT) = O.ooOO5 and thus break its 
bonds. Thus by increasing the observation time t we should find the above thresholds to 
viuy slightly, and this indeed is shown in figure 2 to be the case. A proper definition thus 
should use a veIy low but positive cut-off probability such that bonds broken less often than 
this cut-off are still regarded as unbroken. We have not found such a definition of 'rarely' 
bmken bonds here, and thus our statement on the percolation of never-broken bonds is only 
approximative. 

Figures 1 and 2 also show OUT two-dimensional results, giving an apparent phase 
transition near kT/ J = 0.7. This temperature would be regarded as a phase transition point 
also from direct Monte Carlo simulations of short duration. Compand to three dimensions, 
however, our two-dimensional data seem to depend more strongly on observation time t. 

Figure 3 shows histograms how often bonds are broken or unbroken. We see a maximum 
close to, but not exactly at, unit probability: during sweeps 9001 to 10003 through the 
lattice, the largest number of bonds were broken three. times and unbroken 997 times at 
kT/J  = 1.2. For higher temperatures the histograms are more symmetric and stable in 
time. 

The clusters formed by rarely broken bonds are not those of random percolation theory 
but strongly correlated due to the thermal inkractions between the spins. Thus the number 
of bonds forming the incipient infinite cluster at the transition point kT/J  = 1.2 is about 
7.5 percent of the total number, as opposed to 24.9 percent at the random percolation thresh- 
old in this simple cubic lattice. Our number was found from 4 million sweeps through a 
20 x 20 x 20 lattice, showing little variation with time. 
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Figure 2. Perwlation lhreshold versus decadic logarithm of observation time, for (typicaUy) 
200 x 200 (crosses, kT[J  = 0.7) and 31 x 31 x 31 (quam. kTIJ = 1.2) lattices. 

8000 

7000 

6000 

Y 5000 

2 4000 

B 

3000 

2000 

1000 

0 

+ +I + + + - +  

+ +  
+ +  

9 5 5  960 9 6 5  970 975 980 9 8 5  ~ 9 9 0 ~  995 1000 
probability 

Figure 3. &togram showing how many bonds had a given probability to be unbroken, during 
the interval from 1 to 1000 (qw) and from 9001 to 10000 (crosses) sweeps ulmugh the 
13 x 73 x 13 lattice at kTIJ = 1.2. 

In summary, the rarely broken bonds start to form m’infinite cluster of Correlated bond 
percolations at the three-dimensional spin glass transition. Thii observation, however, is at 
best only one step towards a complete cluster description of spin glasses. After a clarification 
of the questions left open here, one should investigate the properties of these clusters and 



L528 Letter to the Editor 

their relationship to spin glass properties, the possibility of faster cluster-flip algorithms, 
and the transition between the cluster descriptions of spin glasses and ferromagnets. 

This work was supported by the Canada Council and the German-Israeli foundation. We 
thank Naeem Jan for drawing our attention to [SI, for hospitality, and for many encouraging 
discussions. 
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